
1109-A    2 DECEMBER 2016 • VOL 354 ISSUE 6316 sciencemag.org  SCIENCE

G
R

A
P

H
IC

: 
A

D
A

P
T

E
D

 F
R

O
M

 C
. 

D
A

G
D

E
V

IR
E

N
 B

Y
 G

. 
G

R
U

L
L

Ó
N

/
S
C
IE
N
C
E

By Canan Dagdeviren1,2

M
illions of lives rely on implantable 

medical devices. At present, the 

power sources (typically batter-

ies) for such devices are rigid and 

bulky and must be changed fre-

quently. Users are often forced to 

undergo a surgical procedure each time the 

battery needs to be changed, which 

are accompanied by health risks 

and high costs. 

One compelling solution to 

this problem would be batter-

ies that could be recharged or 

replaced by harvesting energy

from the natural mechani-

cal movements of organs. Most 

existing harvesters resemble con-

ventional batteries and depend on rigid 

electronics. They are, therefore, less than 

ideal for intimate contact with soft tissue.

Piezoelectric ceramics can serve as energy 

harvesters, sensors, and actuators because 

they can convert mechanical energy into 

electrical energy and vice versa. The brittle 

nature of such materials, however, limits 

their applications in biomedical areas. 

As a graduate student in John A. Rogers’ 

laboratory at the University of Illinois, Ur-

bana-Champaign, I was intrigued with the 

idea of creating conformable piezoelectric 

devices, which would have the shape and 

mechanical properties that match those of 

soft tissues. Thus, I focused my disserta-

tion research on flexible-stretchable 

piezoelectric systems that could 

transform the available energy 

from natural movement into 

useable signals (1–4).

Cardiac and respiratory mo-

tions are nearly inexhaustible 

sources of mechanical energy, 

as both persist through the dura-

tion of an individual’s life span. Such 

energy can be utilized as a power source 

via mechanically adaptive piezoelectric sys-

tems, which allow intimate integration with 

any region of the body. To create a flexible 

piezoelectric mechanical energy harvester 

(MEH) (4), I formed piezoelectric ceram-

ics (lead zirconate titanate, PZT) into a 

thin capacitor unit [see the figure (A)]. In 

this configuration, the midpoint of the PZT 

layer lies at a distance (h) from the neu-

tral mechanical plane where the bending 

strain is zero. The goal was to maximize the 

electrical response and the degree of bend-

ability while maintaining the strain below 

the fracture thresholds of the piezoelectic 

ceramics. The fabrication process entailed 

situating the capacitor unit on a silicon (Si) 

wafer, chemically etching the unit, lifting it 

off of the wafer and transfer printing it onto 

a flexible substrate (polyimide). Finally, the 

device was encapsulated within a biocom-

patible layer of polyimide to isolate it from 

the bodily fluids and tissues and to mini-

mize the risks of electrical failure or nega-

tive immune responses. 

To assess the biocompatibility of the 

MEH, I grew rat smooth muscle cells (SMCs) 

on the MEH and then measured their ad-

herence and viability. The SMCs readily ad-

hered to fibronectin-coated structures, with 

evident spreading and intact, detectable cy-

toskeletal structures. Using the LIVE/DEAD 

viability kit and a lactate dehydrogenase as-

say, I found that after 9 days of culturing, 

there was no detectable cytotoxicity, with 

more than 96% of cells deemed viable. 

Next, I incorporated a bending stage to 

mimic organ movements, which provided 

insights into the device performance un-

der mechanical loads. The results indicated 

that the MEH could achieve a peak output 

voltage of 3.7 V under peak strains of 0.35% 

with a system efficiency of ~1.2%. Addition-

ally, the generated electrical energy could 

be simultaneously stored with a chip-scale 

rechargeable battery and a Schottky bridge 

rectifier integrated on the same flexible 

substrate with the MEH. 

I then conducted in vivo studies in both 

ovine and bovine animal models, whose 

organ sizes approximate those found in hu-

mans. To determine which part of the heart 

would generate the maximum amount of 

electrical power, I sutured the MEH to a 

right ventricle (RV), left ventricle (LV), and 

the free wall of the heart [see the figure (B)]. 

The RV yielded the highest output voltage, 

likely as a result of its shape and function. 

The chamber of the RV has a box or wedge 

shape with a thin concave free wall (5), 

whereas the LV has a cylindrical shape with 

a thick wall structure (6). The LV ejects the 

blood by a twisting contraction, whereas the 

RV shortens the free wall. The MEH, there-

fore, experiences more bending when it is 

affixed to the RV rather than to the LV.  
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The PZT MEH. Flexible piezoelectric harvester to generate electrical power from internal organs’ movements. (A) The 

schematic illustration of the device layers of a PZT MEH (area of 2 × 2.5 cm2), consisting of 12 groups that are con-

nected in series to the neighboring group in order to increase the output voltage. Each group contains 10 PZT capaci-

tors with top (chromium-gold) and bottom electrodes (titanium-platinum), which are electrically connected in parallel. 

(B) The photograph of a PZT MEH, integrated with a chip-scale rechargeable battery and a Schottky bridge rectifier, on 

a bovine heart. Scale bar, 1 cm.
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As the myocardial tissue of the heart is 

anisotropic (7), I hypothesized that the ori-

entation of the MEH on the heart would in-

fluence the voltage generation. Indeed, the 

MEH oriented in the 0° and 45° directions, 

with respect to the apex of the heart, gener-

ated higher output voltages than the MEH 

oriented in the 90° direction. These results 

were consistent with what we expected 

to see, as the 0° and 45° orientations are 

within the known range of the cardiac fiber 

alignments (+60° on the endocardium and 

–60° on the epicardium) (7). 

Next, I modulated the heart rate through 

electrical and chemical stimulations to 

mimic running. In both tests, the increase in 

heart rate yielded a rise in the voltage gen-

eration, which demonstrated that the MEH 

is capable of functioning during extreme con-

ditions while maintaining intimate integra-

tions with soft tissue. We further determined 

that a stack of five MEHs generated power 

of 1.2 µW/cm2, which is sufficient to oper-

ate a cardiac pacemaker (8). There were no 

mechanical alterations observed in the heart. 

My research produced a first-of-its-kind, 

flexible microgenerator that can harvest 

energy from the natural contractile and re-

laxation motions of organs. I demonstrated 

that this MEH has the capacity to power 

implantable devices. At the intersection of 

piezoelectric materials and novel microfab-

rication techniques, my MEH offers bound-

less possibilities to benefit human health 

and well-being.        j
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