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ESSAY

F
rom Nanoarchaeum equitans, a mi-

crobe barely measuring 400 nm across, 

to Balaenoptera musculus, the blue 

whale that often exceeds 30 m in 

length, one of the most distinguish-

ing characteristics of an organism is 

its size. Animal size is determined by total 

cell number, which is achieved through cell 

proliferation. Proliferation in turn depends 

on cell growth, a process regulated by both 

genetic and environmental factors.

When nutrients are plentiful, cells en-

gage key programs to increase their size and 

mass, whereas a dearth of nutrients trig-

gers opposing programs that release much-

needed cellular building blocks to maintain 

homeostasis. To couple nutrient availability 

to cell size regulation, eukaryotic organisms 

rely on signaling pathways that concomi-

tantly sense environmental nutrient avail-

ability and control downstream processes 

required for growth.

In the past 20 years, the mechanistic tar-

get of the mechanistic target of rapamycin 

(mTOR) complex 1 (mTORC1) has emerged 

as the central signaling pathway that regu-

lates cellular, organ, and organismal size ( 1). 

mTORC1 has major roles in controlling food 

intake, insulin sensitivity, and life span and, 

when deregulated, is implicated in the patho-

genesis of common cancers and diabetes. 

mTORC1 responds to a wide variety 

of stimuli, including growth fac-

tors, oxygen availability, energy, 

and amino acid levels to control 

anabolic and catabolic processes 

( 2). Although amino acids are 

absolutely essential for mTORC1 

activation, surprisingly little is 

known about how they are sensed 

and activate mTORC1.

As a first-year graduate student in Da-

vid Sabatini’s laboratory at MIT, I contrib-

uted to finding the first pieces of the amino 

acid–sensing pathway. Amino acids promote 

mTORC1 translocation to the lysosomal sur-

face, where it becomes activated. This trans-

location is mediated by Rags, a family of 

small guanosine triphosphatases (GTPases) 

( 3,  4) that are localized to the lysosomal sur-

face by a mechanism that had not been elu-

cidated. Unique among small GTPases, Rags 

are obligate heterodimers: the highly related 

RagA and RagB (RagA/B) bind to RagC or 

RagD (RagC/D), which are also very simi-

lar to each other. Amino acids regulate the 

binding of nucleotides to RagA/B, such that 

amino acid stimulation increases their gua-

nosine triphosphate (GTP) loading, which 

leads to the recruitment and binding of 

mTORC1. Thus, a critical event in the amino 

acid–dependent regulation of mTORC1 is 

the conversion of RagA/B from a guanosine 

diphosphate (GDP)– to a GTP-bound state 

( 3– 6). My graduate thesis focused on iden-

tifying the protein factors that positively or 

negatively regulate the function of Rags by 

controlling their nucleotide state as well as 

their lysosomal localization.

I hypothesized that proteins that regulate 

Rags would do so through a direct in-

teraction. By purifying Rags under 

several conditions, we identified 

five proteins that form a novel 

complex, which we named “Ra-

gulator” ( 5,  6). There is a muta-

tion in humans that partially 

reduces the expression of one of 

the Ragulator components, and pa-

tients carrying this mutation are sub-

stantially smaller in size than their peers, a 

characteristic of mTORC1 pathway inhibition 

in model organisms ( 1,  2,  7).

Ragulator localizes to the lysosomal sur-

face and specifically interacts with Rags. 

Through loss-of-function and mislocaliza-

tion studies, we determined that Ragulator is 

both necessary and sufficient for Rag local-

ization, and, as expected, mTORC1 could no 

longer localize to lysosomes and remains in-

active in cells depleted of Ragulator proteins. 

Furthermore, the Rag-Ragulator interaction 
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The pathway of amino acid sensing by mTORC1. (Left) During amino acid deprivation, Ragulator is found as an inactive complex with the v-ATPase. GATOR1 GAP activity toward 

RagA keeps this GTPase in an inactive GDP-bound state that cannot recruit mTORC1. (Right) After amino acid stimulation, GATOR1 is inhibited by GATOR2, and Ragulator and the 

v-ATPase undergo a conformational change releasing the guanine nucleotide exchange factor (GEF) activity of Ragulator toward RagA. At the same time, the FLCN-FNIP complex 

activates RagC, by promoting its GTP hydrolysis. The now-active Rag heterodimer (RagA-GTP, RagC-GDP) recruits mTORC1 to the lysosomal surface, where it interacts with and is 

activated by the small GTPase Rheb, which is itself controlled by growth factor, energy, and oxygen levels ( 1).
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Negative regulators of small GTPases 

have short-lived interactions with their cog-

nate GTPases ( 8). Thus, to identify nega-

tive regulators of Rags, we purified them in 

the presence of a chemical cross-linker that 

preserves transiently interacting proteins. 

This led to the identification of a complex 

of eight Rag-interacting proteins that we 

refer to as “GATOR” [GTPase-activating pro-

tein (GAP) activity toward Rags]. GATOR 

is defined by two distinct subcomplexes: 

GATOR1 and GATOR2. GATOR1 negatively 

regulates mTORC1, and its loss increases cell 

size, whereas GATOR2 positively regulates 

this pathway by inhibiting GATOR1. Subse-

quently, we discovered that GATOR1 directly 

interacts with the Rag GTPases and inhibits 
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is regulated by amino acids, which suggests 

that Ragulator might also control the nucle-

otide loading of the Rag GTPases ( 6). Rags 

pose a particular experimental challenge for 

identifying factors that regulate the nucleo-

tide state of a single Rag, as they exist as 

obligate heterodimers, and so we developed 

several methods that allowed us to analyze 

the nucleotide binding state of one Rag at a 

time. This led to the discovery that Ragulator 

is a guanine nucleotide exchange factor for 

RagA/B that promotes GTP binding and ac-

tivation ( 6). Although this exchange activity 

of Ragulator provides a mechanism by which 

amino acids activate the Rag GTPases, how 

amino acid deprivation inactivated Rags re-

mained a mystery.
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their function through its GAP activity for 

RagA/B, by stimulating GTP hydrolysis ( 9).

Upstream negative regulators of mTORC1 

are commonly mutated in cancer and, in-

deed, inactivating mutations in GATOR1 

genes are found in in a subset of glioblas-

toma and ovarian tumors. Moreover, the 

mTORC1 pathway is insensitive to amino 

acid starvation in cancer cell lines missing 

GATOR1 components and hypersensitive to 

treatment with a U.S. Food and Drug Ad-

ministration–approved mTORC1 inhibitor, 

rapamycin ( 9). Thus, GATOR1 proteins may 

serve as useful biomarkers to help iden-

tify patients likely to respond to clinically 

approved pharmacological inhibitors of 

mTORC1. In addition to its role in cancer, 

the GATOR complex has also been impli-

cated in epilepsy ( 10). Two recent studies 

uncovered that mutation of a GATOR1 

component underlies familial focal epilepsy 

with multiple foci ( 11,  12) and provides a 

molecular etiology for this disease.

After the identification of Ragulator and 

GATOR1 as the first positive and negative 

regulators of the Rag GTPases, respectively, 

additional studies highlighted the complex-

ity of this signal transduction network with 

the identification of new members needed 

to integrate the amino acid signal with size 

regulation. These components include the 

lysosomal vacuolar adenosine triphospha-

tase (v-ATPase), which mediates the amino 

acid signal to Ragulator and is required for 

amino acid–dependent mTORC1 activation 

( 13), as well as the folliculin–folliculin-

interacting protein (FLCN-FNIP) tumor 

suppressor complex, which is responsible 

for activating RagC/D ( 14). These studies 

reveal the presence of a lysosome-based 

signaling machine that is required to sense 

nutrient availability for the spatiotemporal 

regulation of mTORC1 (see the figure), of-

fering us a window into how the size of a 

cell is influenced by its environment. ■  
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