Dan Dominissini


Dr. Dominissini received his Bachelor of Medical Science degree from Tel-Aviv University, Israel, in 2007. He went on to study RNA posttranscriptional modifications for his Ph.D., focusing on adenosine deamination and methylation, with Gideon Rechavi at Tel-Aviv University. He is currently a Human Frontier Science Program postdoctoral fellow in the laboratory of Chuan He at The University of Chicago, where he develops novel chemistries for the study of nucleic acid modifications.


Roadmap to the epitranscriptome

The “RNA world” is not at all hypothetical but rather the biological world we live in (1). For RNA to function within a modern cellular milieu of proteins and DNA, numerous chemical modifications coevolved that help sculpt its interactions (2). To date, well over a hundred nucleotide modifications have been identified in diverse types of RNA molecules (3). Every position of pyrimidine and purine rings can be posttranscriptionally modified, with methylation predominating. Although the importance of some modifications—especially those on structured, stable, and catalytically active RNAs (like ribosomal and transfer RNA)—is appreciated, their mode of action is still largely unknown.